Validation of air pollution biomonitoring networks and related data modelling: a geostatistical approach.

نویسندگان

  • S Gorelli
  • A Santucci
  • G Lorenzini
  • C Nali
چکیده

This paper describes a geostatistical approach for environmental data modeling based on value descriptive analysis, variographic analysis, estimation method and validation. It shows an application related to atmospheric pollutant dispersion (ozone) detected by active biomonitoring in the province of Livorno (Italy). This work proposes a two-stage approach based on: the computation of an index on an exploratory and geostatistical data analysis to assess whether a monitoring network is well distributed in space and allows us to get reliable information about the whole study area; the derivation of a continuous representation of the variable (the Cotyledonous Damage Index) from punctual measurements. The geostatistical approach proposed is useful to define in a structured way the possible problems in a monitoring network, to control the data estimation error in the points not sampled. The case study analysed underlines that the biomonitoring network outline does not have a representative sample station distribution of the study area introducing significant errors related to the territorial generalization of the derived information. The proposed approach allows us to elaborate on the obtained data to carry out the data spatialization associating an error to them and to the evaluation model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial modelling of zonality elements based on compositional nature of geochemical data using geostatistical approach: a case study of Baghqloom area, Iran

Due to the existence of a constant sum of constraints, the geochemical data is presented as the compositional data that has a closed number system. A closed number system is a dataset that includes several variables. The summation value of variables is constant, being equal to one. By calculating the correlation coefficient of a closed number system and comparing it with an open number system, ...

متن کامل

A Novel Type-2 Adaptive Neuro Fuzzy Inference System Classifier for Modelling Uncertainty in Prediction of Air Pollution Disaster (RESEARCH NOTE)

Type-2 fuzzy set theory is one of the most powerful tools for dealing with the uncertainty and imperfection in dynamic and complex environments. The applications of type-2 fuzzy sets and soft computing methods are rapidly emerging in the ecological fields such as air pollution and weather prediction. The air pollution problem is a major public health problem in many cities of the world. Predict...

متن کامل

Modeling spatial distribution of Tehran air pollutants using geostatistical methods incorporate uncertainty maps

The estimation of pollution fields, especially in densely populated areas, is an important application in the field of environmental science due to the significant effects of air pollution on public health. In this paper, we investigate the spatial distribution of three air pollutants in Tehran’s atmosphere: carbon monoxide (CO), nitrogen dioxide (NO2), and atmospheric particulate matters less ...

متن کامل

Modeling spatial distribution of Tehran air pollutants using geostatistical methods incorporate uncertainty maps

The estimation of pollution fields, especially in densely populated areas, is an important application in the field of environmental science due to the significant effects of air pollution on public health. In this paper, we investigate the spatial distribution of three air pollutants in Tehran’s atmosphere: carbon monoxide (CO), nitrogen dioxide (NO2), and atmospheric particulate matters less ...

متن کامل

Accuracy comparison of Elamn and Jordan artificial neural networks for air particular matter concentration (PM 10) prediction using MODIS satellite images, a case study of Ahvaz.

Due to the complexity of air pollution action, artificial intelligence models specifically, neural networks are utilized to simulate air pollution. So far, numerous artificial neural network models have been used to estimate the concentration of atmospheric PMs. These models have had different accuracies that scholars are constantly exceed their efficiency using numerous parameters. The current...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental monitoring : JEM

دوره 11 4  شماره 

صفحات  -

تاریخ انتشار 2009